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Abstract-The paper presents an analysis of turbulent shear flow in which Nikuradse’s experimental 
variation of eddy di!Tusivity across a circular tube is predicted accurately from an harmonic mixing 
length theory. The harmonic form of characteristic length used in the analysis is derived from a theo- 

retical consideration of the turbulent eddy structure. 

NOMENCLATURE 

constant of integration; 
proportionality constant; 
non-dimensional correlation coefficient; 
non-dimensional correlation coefficient ; 
constant ; 
wave number ; 
outer scale of turbulence; 
outer scale of turbulence in (R, 0) plane ; 
characteristic length of turbulence; 
mixing length; 
harmonic length; 
radius of tube ; 
radius from centre of tube ; 
length of radial vector; 
length of radial vector defining size and 
shape of critical eddy; 
critical Reynolds number; 
velocity in direction of radius vector; 
velocity in direction of radius vector; 
velocity in direction normal to radius 
vector; 
fluctuation velocity in tube radius direc- 
tion ; 
fluctuation velocity in tube axial direc- 
tion ; 
local mean velocity in tube axial (z) 
direction; 

78 1’2 
=- 3 

0 P 
friction velocity; 

distance from tube wall measured along 
a radius ; 
shear stress; 
wall shear stress; 

V, kinetic viscosity; 
E, eddy viscosity; 

p 
density; 
polar angular co-ordinate ; 

a, polar angular co-ordinate in (2, R) 
plane ; 

Y? r,lR. 

Suffices 
1, isotropic; 
0, critical eddy dimension; 
s, surface condition. 

INTRODUCTION 

AT THE moment research [l] is being directed at 
the intimate relations which exist between ther- 
mal and momentum diffusivities with the express 
purpose of specifying heat transfer rates more 
accurately. The emphasis in the present paper is 
laid on the accurate calculation of the momentum 
diffusivity for regions where the turbulent eddies 
are fully developed. An approach to the problem 
is made through a mixing length theory where the 
characteristic length is shown to depend on the 
microstructure of the turbulence through an 
harmonic mean length 1% defined by 

1 1 2,1 
-_ = - 
1, 2710cd0* J 

The use of the harmonic mean length was first 
suggested to the author during the recent inter- 
national heat transfer conference by Dr. Buleev 
of the U.S.S.R. 
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1. The universal velocity profile for turbulent $ON~ 
in round tubes 

It is instructive to re-examine the existing work 
for circular channels. Nikuradse’s experiments 
show that near to the wall a universal velocity 
profile of the following form exists, Fig. 1. 

For laminar flow function (6r may be obtained 
directly from the Navier-Stokes equations. 

W Yw, . 2: ~~ - 
w, v 

In the turbulent region energy is extracted from 
the mean flow by the eddies. The experiments of 
Laufer [2] show that most of this energy is 
dissipated locally aIthough a small percentage 
is diffused away from the wall towards the centre 
of the tube. Using this fact it may be supposed 
approximately that 

where Im is an unspecified mixing length which 
characterizes the turbulent fluctuations. From 
dimensionless analysis it follows that 

(5) 

For high turbulence where viscosity may be 
neglected we have for regions near to the wall 

To integrate this equation it is usual to use 
Prandtl’s mixing length given by 

IV& =I: Ky . (7) 

Equation (2) now takes the form 

where B is a constant and K -= 0.4. 
In practice there is a smooth transition from 

the laminar to the turbulent region. Experiments 
show that the form of equation (8) is strictly 
justified only for regions near to the wall. This is 
to be expected because of the assumption of a 
constant shearing stress in the derivation of the 
equation. Away from the wall there is an in- 
creasing divergence between experimental results 
and the velocity gradient predicted by equation 
(8). For instance at the tube centre the predicted 
velocity gradient is given by 

(9) 

FIG. 1, Nikuraclse plot universal velocity profile. 
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where physically it is zero. This divergence 
between the turbulent portion of the universal 
velocity profile represented by equation (8) and 
the experimental velocity profiles is emphasized 
when the eddy diffusivity is considered. The 
variation of eddy diffusivity is of prime impor- 
tance in heat transfer calculations. 

By definition 

(10) 

In the turbulent region v is small compared to E 
and therefore from equations (8) and (10) 

(11) 

The distribution of shear stress for a tube is 
given by 

hence 

7= Ts(1 -y/R) (12) 

(13) 

or 

& = & [(k)” - (5 -Y/# (14) 

This is the equation of a parabola with its vertex 
at c/RW, = 0.1, y/R = 0.5. 

A comparison between this result based on the 
universal velocity profile and values calculated 
by Schlicting [3] directly from Nikuradse’s 
experimental results is given in Fig. 2. 

2. Some conclusions jiom the mixing length theory 
For the general case in which viscosity is 

important we may write 

(15) 

where R = y + re. 
The mixing length and shear stress distribu- 

tion may be introduced to yield 

R>y>O. 

> 04- ib 

I I I I 
0 0.2 0.4 0.6 0.8 

Y/R 

FIG. 2. 

Solving (16) for (d W/dy) we have 

dW 
- -6.+ 

du- 2 
hence 

$ + W:U -Y/R) 
m 

I 

l/2 

+ W:(l -y/RI . (18) 

Certain deductiols may now be made from 
equations (16, 17, 18). 

(1) For y + R 

pwV WJ?n 
__ --f (1 - y/R), providing __ 
T8 V 

IS large in 

this region. 

(2) For y = R 

WV = 0, d-w Z 0. 
dy 
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(3) From equation (18) 

ptj-, w&n 
---+Oasy+-Oproviding-- -+Oasy-+O. 
7‘3 v 

(4} At the wall we must have 

(19) 

Substituting this value into equation (17) 

dW lJ 
_- -2 - _. 
dy 21; 

+& l$- [ 
?(I - y/R) (qyZ. 

Now for 1x1 < 1 the following approximation 
holds 

(1 + X)1/2 = 1 + ; - G + etc. (20) 

Hence 

7 

Then providing Im -+ 0 as y -+ 0 we must have that 

dW dW 

dy+ dy s 
(-) asy+O. 

It is insufficient however, to show that the 
mixing length theory is consistent with the fluid 
boundary conditions but it must be further 
demonstrated that the characteristic length fm 
has a physically realistic value within the tube 
geometry. Fortunately, Nikuradse has calculated 
the true variation of Em from the experimental 
velocity profiles [3, p. 5111 and this is shown in 
Fig. 3, The errors in the predicted eddy diffusivity 
described in Section 1 are therefore a~ributed 
to the wrong choice of a mixing length and to 

the neglect of the true shearing stress variation 
in the derivation of equation (8). 

3. Derivation of a characteristic length for turbu- 
mention in a duct 

The turbulent motion of a fluid is made up of 
eddies and fluctuations of all orders which grow, 
exist for some period of time in a state of virtual 
equilibrium, and then decay. In their publica- 
tions on the theory of turbulence both Batchelor 
[4, p. 1051 and Townsend [5, p. 431 indicate that 
the characteristic length for the turbulent 
fluctuations in an infinite turbulent velocity field 
may be written. 

1, = j;.f(?)dr (22) 

where j(r) is a non-dimensional velocity cor- 
relation coefficient defined in Fig. 4. An approxi- 
mate shape forf(i) is illustrated by Batchelor in 
his book [4, p. 481. In the formation of any 
theory the first problem is to construct a suitable 
mathematical model of the turbulence which 
yields a satisfactory form forf’(i), Of the existing 
theories the most widely accepted model of the 
turbulent structure is that presented by Kol- 
mogoroff 161. Within the spectrum of all the 
eddies Kolmogoroff supposes that there are 
some which neither grow nor decay with time, 
The whole of the energy subtracted from the 
mean %Iow is then assumed to be dissipated in 
these critically sized eddies. Because the classical 
Kolmogoroff analysis led to some difficulty a new 
approach was made, which however, retained the 
idea of a critical sized eddy in the turbulent 
structure. 

Consider a fluid flow characterized by the 
values of the kinematic viscosity v, the charac- 
teristic velocity scale U, and the characteristic 
length scale 1. This flow is stable only where the 
local Reynolds number does not exceed a certain 
value Rec. With increase of the local Reynolds 
number beyond the critical value large eddies 
become unstable and break down into smaller 
eddies transferring most of their kinetic energy 
in the process. The mean velocity at which 
an eddy begins to break down is then given 
approximately by 

(23) 
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-Harmonic meon 

length colculotion 

0.06 - 

profile dw/dy= l2~5Wr/y) 

(Y/R ) 

FIG. 3. 

The purpose of this paper is to deduce results 
which may be applied to non-isotropic shear 
flow. Consider further therefore, the velocity 
correlation which exists during the period of 
equilibrium between a non-isotropic critical 
eddy of mean dimension PO and another non- 
isotropic eddy of mean dimension i, each of these 
eddies being centred at r = 0. Strictly speaking 
no finite boundaries exist to an eddy since the 
properties of the fluid must be continuous. When 
eddies of some finite size P are described by their 

up (7) 

/ i f(F) = up ( Q u, ( T)/gg 

(0) 

FIG. 4. Definition of correlation functions. 
3F 

3 

mean property it implies that a discontinuity has 
been introduced into the analysis by the lumping 
procedure. 

To obtain a solution the following assumptions 
are made. 

(1) That eddies having the same origin (Y = 0) 
begin to decay at the same critical Reynolds 
number. 

(2) That critical eddies are deformed in a given 
direction in proportion to the outer scale of 
turbulence L in that direction, e.g. if L is 
constant in all directions then the eddies 
become isotropic. 

(3) Within the critical sized eddy each portion of 
the fluid is attributed the mean flow charac- 
teristics of that eddy. 

Under these conditions the equations for the 
correlation coefficient may be written: 

ForL>f>fo 

(24) 
R2 v2 

Up(i = -g- 

(25) 

and for f0 > ? > 0 
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determined for a bounded turbulent velocity 

7- 

(b) 

In this book on the structure of turbulent 
shear flow Townsend [5, p. 121 has shown that the 
wave number k of an eddy of size Y is approxi- 
mately given by 

FIG. 5. Theoretical form of correlation functions. (31) 

The approximating shape of the correlation 
coefficient f(P) is then shown in Fig. 5. For 
large values of J the approximation to the dimen- 
sionless correlation coefficient tends to zero. 

An interesting fact now emerges when the 
complementary correlation function g@) is 
considered Fig. 5. For isotropic turbulence 
Batchelor [4, p. 461 has shown that g&) is 
related to ,fi(f) by the condition of continuity, 
namely 

Hence for L > ? > f,, 

and for Jo >, J > 0 

g{(J) = 1. 

Results (28) and (29) show for isotropic turbu- 
lence that ga(?) is discontinuous at i = Jo, Fig. 5. 
In reality the slope of,&(?) must be continuous 
at J = pO, leading to a continuous but quickly 
changing value for gi(t% The mathematical model 
therefore creates a region in which there is a 
drastic change in the circulation velocity at 
? = f,, which permits dissipation of large quanti- 
ties of energy by viscous action. A form for the 
macroscopic characteristic length I, may now be 

The mean value of the wave number associated 
with the mean size of the critical eddy must there- 
fore be written 

k 

0 
= L = S ( l/r01 d7 

r. J-d?7 (32) 

where 7 is the solid angle. The element of solid 
angle d? is defined by dn = sin a da d0 where 
ro, a, 0 are the polar co-ordinates defining the 
boundaries of the critical eddy. 

Making use of the second assumption we may 
also write 

r. = CL (33) 

where C is a constant and L the outer scale of 
turbulence in any direction. Equation (3) for the 
characteristic length lc then becomes 

I 
e 

= [1+‘og (l/C)1 Sdrl 
S(lirddrl _’ 

(34) 

For the special case of a parallel sided duct of 
constant cross-sectional area, the eddies become 
symmetrical in the axial direction and equation 
(34) reduces to 

, 
e 

= (4/r) Kl + log (l/C))/(l/C)l __- 
(1/2fl) .I? (1/W de 

(35) 

where L, is measured in the (R, 0) plane, i.e. 
L, = L sin a. 
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It remains to show that the constructed mathe- 
matical model is consistent with the experi- 
mental evidence. 

Table 1 

rdR &lR 

4. Experimental ver$cation qf the turbulence 
structure model 

For a circular tube we have 

L: + 2rCL, cos 6 - (R2 - rz) = 0. (36) 

Hence 

R 1 2n de 
-Z-- 

s Ic ZPC, 0 - y cos e + (1 - p sin2 ev (37) 

where 

c = 4 
l 7r 

[ 

l + loge WC) 
(l/C) I and y = r ,R 

c . 

Therefore 

R 2 

s 

n/2 

z=z,(l-p) 0 
(1 - y2 sin2 ey de 

or 

0.0 0.14 
0.1 0.139 
0.2 0.136 
0.3 0.130 
0.4 0.123 
0.5 0,112 
0.6 0.098 
0.7 0.0826 
0.8 0.0616 
0.9 0.0338 
0.95 0.020 
1.0 0.0 

For E B Y 

1, (G/2) (1 - r3 
2 = mf - 9 sin2 t)yi2 d(3’ 

l 
__ zzz f (1 - y/R)l/2, 

(38) RWr 

If the characteristic length is to be associated 
with the mixing length then from Nikuradse’s 
results, Fig. 3, we must have that 

Substituting the calculated values for I, the fol- 
lowing results were derived (Table 2). 

These calculated values of the eddy viscosity 

1 + loge WC) = o*14 yy 

WC) 0 4 * (39) 

The solution of equation (39) is presented in 
graphical form in Fig. 7. From this the cut off 
value off(i) is determined, i.e. L = 44.9, giving 
{(‘$_E = l/44.5 = 0.0225 which is an acceptable 

Evaluating the elliptic integral in equation 
(38) the following results are obtained (Table 1). 

Calculated mixing lengths 

(a) For Prandtl’s assumption of Zm = 0.4~. 
(b) For the universal velocity profile. 
(c) For I,. 

are compared to Nikuradse’s experimental 
values in Fig. 3. It is seen that the agreement of 
lc with Nikuradse’s curve is almost perfect. 

The experimental variation of eddy diffusivity 
may also be predicted using the calculated value 
of & for I*. 

on tube surface 

FIG. 6. Diagram of co-ordinates. 
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Table 2 

rdR 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

8:Z5 
1.0 

dR W, 

0.0 
0.0440 
0.0609 
0.0714 
0.0780 
00793 
0.0760 
0.0693 
0.0551 
0.0340 
0.0195 
0.0 

____-. 

are compared to the experimental results in Fig. 
2 and the agreement is again almost perfect. 

CONCLUSIONS 

A tentative mathematical model has been con- 
structed for the turbulent motion of an incom- 
pressible fluid in shear flow within a duct. In 
the analysis it is assumed that all the energy 
extracted from the mean flow is dissipated 
locally. This assumption is not completely true 
and accounts for the small discrepancy between 
calculated and experimental diffusivity at the 
tube centre as illustrated in Fig. 2. Nevertheless, 

the model gives excellent agreement with experi- 
ment for a circular tube. Further analytical 
research is required before the turbulent struc- 
ture can be specified. 

(a) In the transition region of the boundary 
layer, [7]. 

(b) In the outer edge of a growing boundary 
where the so called “Law of the Wake” 
applies, 181. 

An effort is now being made towards an under- 
standing of these phenomena. 
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R&sum&--L’article presente une etude de l’ecoulement turbulent dans lequel la variation de la diffusivite 
turbulente de Nikuradse dans un tube circulaire est calcul6e avec precision a partir dune theorie 
harmonique de la longueur de melange. La forme harmonique de la longueur caracteristique utilisQ 

dans l’etude est deduite dune consideration theorique de la structure des tourbillons. 

Z~~fa~~-Die Arbeit stellt eine Analyse dar der turbulenten ~hers~~rnung, in der 
Nikuradses experimentelle Variation des t~bulente~ Austausches in einem Rohr mit Kreisquerschnitt 
mit einer harmonischen Mischltigentheorie genau bestimmbar wird. Die harmonische Form der 
Analyse benutzten charakteristischen L%nge wird aus einer theoretischen Betrachtung der turbulenten 

Wirbelstruktur gewonnen. 

AHHOTB~HS-R CTaTbe AaeTCFI aHaJiH3 Typ6yJIeHTHOI'O BIlXpeBOrO TeYeAHE, B ROTOPOM II0 

3KC~ep~~eHTa~bKbI~ ~aHH~~ %iKypaAae TO%fO PaCCWTaHO M3MeHeWEIe KO3~~~~~e~a 

Typsy~e~HO~ ~~#~y3~~ B I~p~r~O~ Tpy6e C ~O~O~b~ TeOpHR rap~OK~~eCK0~ WEiHbl 

CMemeHHR. 

rapMoaa4ecnaa +opMa xapawrepaoti gm~br, mnonbayehiafx B aHamae, ~bI30gflTCfl n3 

TeOpeTWieCHOrO PaCCMOTpeHHH CTpYKTypbl Typ6yJleHTHbIX BHXpeti. 


