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Abstract—The paper presents an analysis of turbulent shear flow in which Nikuradse's experimental

variation of eddy diffusivity across a circular tube is predicted accurately from an harmonic mixing

length theory. The harmonic form of characteristic length used in the analysis is derived from a theo-
retical consideration of the turbulent eddy structure.

NOMENCLATURE
constant of integration;
proportionality constant;
non-dimensional correlation coefficient;
non-dimensional correlation coefficient;
constant;
wave number;
outer scale of turbulence;
outer scale of turbulence in (R, 0) plane;
characteristic length of turbulence;
mixing length;
harmonic length;
radius of tube;
radius from centre of tube;
length of radial vector;
length of radial vector defining size and
shape of critical eddy;
critical Reynolds number;
velocity in direction of radius vector;
velocity in direction of radius vector;
velocity in direction normal to radius
vector;
fluctuation velocity in tube radius direc-
tion;
fluctuation velocity in tube axial direc-
tion;
local mean velocity in tube axial (z)
direction;

m\V2 .
= (—P) , friction velocity;

distance from tube wall measured along
a radius;

shear stress;

wall shear stress;

v,  Kinetic viscosity;

e, eddy viscosity;

density;

6, polar angular co-ordinate;

a, polar angular co-ordinate in (Z, R)

plane;
y,  re/R.
Suffices
i, isotropic;
o, critical eddy dimension;
s, surface condition.

INTRODUCTION

AT THE moment research (1] is being directed at
the intimate relations which exist between ther-
mal and momentum diffusivities with the express
purpose of specifying heat transfer rates more
accurately. The emphasis in the present paper is
laid on the accurate calculation of the momentum
diffusivity for regions where the turbulent eddies
are fully developed. An approach to the problem
is made through a mixing length theory where the
characteristic length is shown to depend on the
microstructure of the turbulence through an
harmonic mean length /, defined by

1121
o 2m)y Ly
The use of the harmonic mean length was first
suggested to the author during the recent inter-

national heat transfer conference by Dr. Buleev
of the U.S.S.R.

df. (1)

805



806

1. The universal velocity profile for turbulent flow

in round tubes
It is instructive to re-examine the existing work
for circular channels. Nikuradse’s experiments
show that near to the wall a universal velocity
profile of the following form exists, Fig. I.

won()

7 @)

For laminar flow function ¢; may be obtained

directly from the Navier-Stokes equations.
W yw.

W 3)

In the turbulent region energy is extracted from

the mean flow by the eddies. The experiments of

Laufer [2] show that most of this energy is

dissipated locally although a small percentage

is diffused away from the wall towards the centre

of the tube. Using this fact it may be supposed
approximately that

— d

wo = ¢y (:’m, a?)

@

where I, is an unspecified mixing length which
characterizes the turbulent fluctuations. From
dimensionless analysis it follows that
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For high turbulence where viscosity may be
neglected we have for regions near to the wall
— d WY
= s T T = 24 .
Ty 7= pwb = pl 2 ( e

(6)

To integrate this equation it is usual to use
Prandt!’s mixing length given by

In = Ky. 0
Equation (2) now takes the form
S B A

2 < log (f;‘* ) -+ B )

where B is a constant and K == (-4,

In practice there is a smooth transition from
the laminar to the turbulent region. Experiments
show that the form of equation (8) is strictly
justified only for regions near to the wall. This is
to be expected because of the assumption of a
constant shearing stress in the derivation of the
equation. Away from the wall there is an in-
creasing divergence between experimental results
and the velocity gradient predicted by equation
(8). For instance at the tube centre the predicted
velocity gradient is given by

— (‘dW)2 “ ‘dW) w, )
wo == {2{-—1]. =t
m dy, dy{ y=R KR :
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Fic. 1. Nikuradse plot universal velocity profile.
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where physically it is zero. This divergence
between the turbulent portion of the universal
velocity profile represented by equation (8) and
the experimental velocity profiles is emphasized
when the eddy diffusivity is considered. The
variation of eddy diffusivity is of prime impor-
tance in heat transfer calculations.
By definition

d
T = (V+ e) H* (10)

In the turbulent region v is small compared to e

and therefore from equations (8) and (10)

T dy Ty
T AW T 25 W, (n

The distribution of shear stress for a tube is
given by

7= (1 — y/R) (12)
hence
e = ’—;ya — y/R) (13)
or
€ 1 1\2 1 2
ww, =25 |(o) ~ o) | a9

This is the equation of a parabola with its vertex
at ¢/RW, = 01, y/R = 0-5.

A comparison between this result based on the
universal velocity profile and values calculated
by Schlicting [3] directly from Nikuradse’s
experimental results is given in Fig. 2.

2. Some conclusions from the mixing length theory
For the general case in which viscosity is
important we may write

T (dW)
- = — -+ Wb
14

where R = y + r.
The mixing length and shear stress distribu-
tion may be introduced to yield

- (80) ()
R=2y=0.

(1)

(16)
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Solving (16) for (dW/dy) we have
dw v 2 w2 1/2
FE ! — y/R 17
o~ "zt [414+ 4= )] (17)
hence
— dw v2
wo = 12 (H;) 2 + W2(1 — y/R)

v

1/2
2(1] —
- Elapewra-an] T as)
Certain deductions may now be made from
equations (16, 17, 18).
(1) For y—> R

Wl
L:vf — (1 — y/R), providing
8

is large in

this region.
(2) Fory =R
— dw

wo = 0, dy = 0.
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(3) From equation (18)

Wb,

- —>0asy~>0.

P, 0as y->0providing
Ts v

{4) At the wall we must have

75 dw
L= W= —) . 19
= wi= (), (19)
Substituting this value into equation (17)
daw v
dy 27

2
v 42 dwy v
gl -mig)]
Now for |x| < 1 the following approximation
holds

2
(14 02 =1+ g — % -+ etc. 20)

Hence
dw - v
dy 2

v T 202 4
+ g [1 4255 iR (),

204 d\2
—mey 2 f
5 (1 — y/R) (!y)s"f-...]

o),

8

1
|
i
} @n
|

Then providing J, ~ 0 as y — 0 we must have that
dW»} aw 0
Ey_ ‘(E* . as y-—=>u.

It is insufficient however, to show that the
mixing length theory is consistent with the fluid
boundary conditions but it must be further
demonstrated that the characteristic length Iy
has a physically realistic value within the tube
geometry. Fortunately, Nikuradse has calculated
the true variation of /; from the experimental
velocity profiles [3, p. 511] and this is shown in
Fig. 3. The errors in the predicted eddy diffusivity
described in Section 1 are therefore attributed
to the wrong choice of a mixing length and to

G. T. J. HOOPER

the neglect of the true shearing stress variation
in the derivation of equation (8).

3. Derivation of a characteristic length for turbu-
lent flow in a duct

The turbulent motion of a fluid is made up of
eddies and fluctuations of all orders which grow,
exist for some period of time in a state of virtual
equilibrium, and then decay. In their publica-
tions on the theory of turbulence both Batchelor
{4, p. 105] and Townsend [5, p. 43] indicate that
the characteristic length for the turbulent
fluctuations in an infinite turbulent velocity field
may be written.

e=[§ f(F)dr (22)
where f{F) is a non-dimensional velocity cor-
relation coefficient defined in Fig. 4. An approxi-
mate shape for f () is illustrated by Batchelor in
his book [4, p. 48]. In the formation of any
theory the first problem is to construct a suitable
mathematical model of the turbulence which
yields a satisfactory form for f (7). Of the existing
theories the most widely accepted model of the
turbulent structure is that presented by Kol-
mogoroff {6]. Within the spectrum of all the
eddies Kolmogoroff supposes that there are
some which neither grow nor decay with time.
The whole of the energy subtracted from the
mean flow is then assumed to be dissipated in
these critically sized eddies. Because the classical
Kolmogoroff analysis led to some difficulty a new
approach was made, which however, retained the
idea of a critical sized eddy in the turbulent
structure.

Consider a fluid flow characterized by the
values of the kinematic viscosity », the charac-
teristic velocity scale U, and the characteristic
length scale [. This flow is stable only where the
local Reynolds number does not exceed a certain
value Rg. With increase of the local Reynolds
number beyond the critical value large eddies
become unstable and break down into smaller
eddies transferring most of their kinetic energy
in the process. The mean velocity at which
an eddy begins to break down is then given
approximately by

RecV

U==5 (23)



TURBULENT MOMENTUM DIFFUSIVITY WITHIN A CIRCULAR TUBE 809
016
o-1af
o2l g |
S o Nikurodse
N Q experiments o
3 i o
N v
£ I,O o ~Harmonic mean
g 008t & length calculation
L
(=
; 0:06 | Universal velocity
s profile dw/dy=(2-5Wz/y)
0-04
002~
I L | L [ I 1 L 1
0 01 02 03 04 05 o6 07 08 09 0
(y//?)
Fic. 3.

The purpose of this paper is to deduce results
which may be applied to non-isotropic shear
flow. Consider further therefore, the velocity
correlation which exists during the period of
equilibrium between a non-isotropic critical
eddy of mean dimension 7, and another non-
isotropic eddy of mean dimension 7, each of these
eddies being centred at r = 0. Strictly speaking
no finite boundaries exist to an eddy since the
properties of the fluid must be continuous. When
eddies of some finite size 7 are described by their

Up (7)

HGEAC ARGV

(a)

Up (7)

Un(Ro)
g(F) =G G, (7, (3)°

{b)

FiG. 4. Definition of correlation functions.
3F

mean property it implies that a discontinuity has
been introduced into the analysis by the lumping
procedure.

To obtain a solution the following assumptions
are made.

(1) That eddies having the same origin (r = 0)
begin to decay at the same critical Reynolds
number.

(2) That critical eddies are deformed in a given
direction in proportion to the outer scale of
turbulence L in that direction, e.g. if L is
constant in all directions then the eddies
become isotropic.

(3) Within the critical sized eddy each portion of
the fluid is attributed the mean flow charac-
teristics of that eddy.

Under these conditions the equations for the
correlation coefficient may be written:

ForL >F >,

—— RZ 2
Up(FH)Up(Fo) = ;:f (24)
R
fF) = (Rgcvz)/(fg) =7 25)
and for 7, =7 =0
L (R
f7) = (Rz_cvz)/(fg) =1 (26)
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Fic. 5. Theoretical form of correlation functions.

The approximating shape of the correlation
coefficient f(7) is then shown in Fig. 5. For
large values of 7 the approximation to the dimen-
sionless correlation coefficient tends to zero.

An interesting fact now emerges when the
complementary correlation function gy(F) is
considered Fig. 5. For isotropic turbulence
Batchelor [4, p. 46] has shown that gi(F) is
related to fi(F) by the condition of continuity,
namely

«@=r0+ 1720 @)
Hence for L > 7 > 7,
gi(F) = 3 fi(7) (28)
and for 7 > F >0
gi(F) = 1. (29)

Results (28) and (29) show for isotropic turbu-
lence that g4(7) is discontinuous at 7 = #,, Fig. 5.
In reality the slope of fi(F) must be continuous
at 7 = F,, leading to a continuous but quickly
changing value for gi(7). The mathematical model
therefore creates a region in which there is a
drastic change in the circulation velocity at
7 = Fo which permits dissipation of large quanti-
ties of energy by viscous action. A form for the
macroscopic characteristic length /, may now be
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determined for a bounded turbulent velocity
field.

le= [5f(F)dF = [§ f(A A7+ [T () dF

L\
== Fy 4 Fo lOge (_ )

1y
or

| + log (L/fo)

[c = 05", ‘

(30)

In this book on the structure of turbulent
shear flow Townsend [5, p. 12] has shown thatthe
wave number k of an eddy of size r is approxi-
mately given by

|
ko=
v

(31

The mean value of the wave number associated
with the mean size of the critical eddy must there-
fore be written

J (1fro) dm
S A

where 7 is the solid angle. The element of solid
angle dv is defined by dy = sin a da df where
ro, a, 8 are the polar co-ordinates defining the
boundaries of the critical eddy.

Making use of the second assumption we may
also write

(32

ro = CL (33)

where C is a constant and L the outer scale of
turbulence in any direction. Equation (3) for the
characteristic length /, then becomes

;. [T log (1/C)]fdy
‘ T(rgdy

For the special case of a parallel sided duct of
constant cross-sectional area, the eddies become
symmetrical in the axial direction and equation
(34) reduces to

;i) [+ log (1/O)/(1/)]
e (1/2m) f3 (1/L,) d6

(34

(33)

where L, is measured in the (R, §) plane, i.e.
L, = Lsina.
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It remains to show that the constructed mathe-
matical model is consistent with the experi-
mental evidence.

4. Experimental verification of the turbulence
structure model
For a circular tube we have

L2+ 2rLycos b — (R* —r2) = 0.

Hence

(36)

R | d¢ 37
7.7 3G,y “ycoso (1~ psmepr O

where

41+ loge (1/C) .
=2 [T |y =
Therefor¢
R 2

/2
—— __ 2 cin2 A)1/2

or

b (=G2) (A —9%)
R 32 (1 — % sin? 0)2 3¢

If the characteristic length is to be associated
with the mixing length then from Nikuradse’s
results, Fig. 3, we must have that

1 +log (1/C) . (7
1) "“4(4)'

The solution of equation (39) is presented in
graphical form in Fig. 7. From this the cut off
value of f(7) is determined, i.e. L = 44-5r, giving
S (F=_z = 1/44-5 = 0-0225 which is an acceptable
value.

Evaluating the elliptic integral in equation
(38) the following results are obtained (Table 1).

Calculated mixing lengths

(38)

(39

(a) For Prandtl’s assumption of 4, = 0-4y.
(b) For the universal velocity profile.
(c) For /.

are compared to Nikuradse’s experimental
values in Fig. 3. It is seen that the agreement of
l. with Nikuradse’s curve is almost perfect.

The experimental variation of eddy diffusivity
may also be predicted using the calculated value
of I, for I,.

Table 1
re/R I/R
0-0 0-14
01 0-139
02 0-136
03 0-130
04 0-123
05 0112
0-6 0-098
0-7 0-0826
0-8 0-0616
0-9 0-0338
0-95 0-020
1-0 00

For e > v
Tl — iR = 12 (YN - (AP
5 s (1 ¥/R) lm(dy lc dy /-

Hence

€

aw
RW, '

= Je 1/2 — 2
= R(l — y/R)*?, where ¢ = /2 (d—y
Substituting the calculated values for /, the fol-
lowing results were derived (Table 2).

These calculated values of the eddy viscosity

P=point on tube surface

FIG. 6. Diagram of co-ordinates.
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Table 2 the model gives excellent agreement with experi-
ment for a circular tube. Further analytical
ro/R J/RW, research is required before the turbulent struc-
ture can be specified.
0 00 (a) In the transition region of the boundary
01 0-0440
02 0-0609 layer, [7] '
03 00714 (b) In the outer edge of a growing boundary
04 0-0780 where the so called “Law of the Wake™
05 0-0793 app]les’ [8].
06 0-0760 . .
07 00693 An effort is now being made towards an under-
08 0-0551 standing of these phenomena.
09 0-0340
095 0-0195 REFERENCES
10 0-0 1. R. G. DEIssLER, Turbulent heat transfer and tempera-

are compared to the experimental results in Fig.
2 and the agreement is again almost perfect.

CONCLUSIONS

A tentative mathematical model has been con-
structed for the turbulent motion of an incom-
pressible fluid in shear flow within a duct. In
the analysis it is assumed that all the energy
extracted from the mean flow is dissipated
locally. This assumption is not completely true
and accounts for the small discrepancy between
calculated and experimental diffusivity at the
tube centre as illustrated in Fig. 2. Nevertheless,
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Résumé—Larticle présente une étude de I’écoulement turbulent dans Jequel la variation de la diffusivité

turbulente de Nikuradse dans un tube circulaire est calculée avec précision a partir d'une théorie

harmonique de la longueur de mélange. La forme harmonique de la longueur caractéristique utilisée
dans Pétude est déduite d’une considération théorique de la structure des tourbillons,

Zusammenfassung—Die Arbeit stellt eine Analyse dar der turbulenten Scherstrémung, in der

Nikuradses experimentelle Variation des turbulenten Austausches in einem Rohr mit Kreisquerschnitt

mit einer harmonischen Mischlingentheoric genau bestimmbar wird. Die harmonische Form der

Analyse benutzten charakteristischen Linge wird aus einer theoretischen Betrachtung der turbulenten
Wirbelstruktur gewonnen.

Aunoranus—B craThe JaeTCH AHAAH3 TYPOYIEHTHOrO BHXPEBOI'0 TEYEHUHA, B KOTOPOM IO
SKCTEPAMEHTANLHNM KaHHEM Hurypajse TOYHO PACCUMTAHO UBMeHeHMe . Koa(fummenta
rypOynentholt muddysun B Kpyraoft TpyGe ¢ HOMOMBIO TEODHYM FAPMOHMYECHON JUIMHM
CMeuIeHuA,
Tapmonudeckas $opma XapaKTepHOR JIMHEI, MCIOJL3yeMas B aHANUBe, BEIBOJATCHA U3
TEOPETHYECKOr O PACCMOTPEHIA CTPYKTYPH TypOyJIeHTHHX BUXpelt.
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